

Joseph Kasser DSc CEng CM MIEE

1

Systems Engineering and Evaluation Centre

Topics

- The current paradigm
- Methodologies
- The Cataract Methodology
- From the Cataract perspective
- Results in the academic environment
- Questions, comments and discussion

Current paradigm

- Cost and schedule overruns
- Failures
- Systems that don't meet the customer's needs
- International situation
 - CHAOS
 - OASIG

3

Systems Engineering and Evaluation Centre

Lessons learned

- Programs do not fail* because the requirements change.
 - Tasks, products and processes exist
- Programs fail* because of poor requirements engineering management
 - failure to reevaluate requirements in the context of
 - changes in needs
 - changes in technology
 - changes in paradigm
 - air power and battleships
 - guided ordnance and surface ships
- * [cancelled] or [incur > 60% (cost or schedule) over-runs]

4 |

Conventional wisdom

 Waterfall approach does not cope well with changing requirements.

- Result
 - Not much of an improvement.

Cataract methodology

- Extends the spiral approach allowing for system evolution by emphasizing
 - Configuration management
 - the type of information needed to control system and software development in an integrated engineering and management environment
- Assembled from proven parts of other methodologies

15

Systems Engineering and Evaluation Centre

Cataract methodology

- The waterfall methodology works very well over a short period of time
- Implementation and delivery of systems and software are often performed in "Builds"
 - each successive Build provides additional capabilities.

The Cataract methodology

- Is an integrated product-process methodology
 - engineering and management
- Depends on a new generation of tools and information displays such as the QSE, FREDIE, and CRIP charts.

Change management

- Manage change to achieve convergence between
 - the needs of the user and
 - the capability of the as-built system

in a cost-effective manner

19

Systems Engineering and Evaluation Centre

Changes

- Planned
- Unplanned
- Urgent
- Not so urgent
- Whenever

- Changes are managed via a
 - change processing process
 - under CCB control

Build planning

- Build 0
 - Initial requirements and architecture design
- Recognition that
 - All the requirements are not finalized at SRR.
 - Additional requirements will become known as the project progresses.
 - Design and implementation decisions
 - will be deferred and made in a just in time manner
 - maximize the "don't care" situations

25

Systems Engineering and Evaluation Centre

Build Zero is to - 1

- Identify the highest priority requirements.
- Baseline an initial set of user needs and corresponding system requirements.
- Develop the QSE for each of the baselined requirements
- Complete the first draft of the SEMP and OCD
- Design the Architecture Framework for the system in accordance with the DERA Reference Model

Build Zero is to - 2

- Perform risk assessment to determine the proposed Architecture Framework can meet all of the highest priority requirements.
- Document the assumptions
 - driving the Architecture Framework
 - a representation of operational scenarios that the Architecture Framework prohibits
- Develop the WBS to
 - level the workload across the future Builds
 - Implement the highest priority requirements in the earlier Builds

Builds

- Incremental
- Evolutionary
- Revolutionary
 - an entire replacement system can be factored into the schedule.
 - Legacy systems can be upgraded and replaced with minimal waste of resources
 - By knowing when parts of the system will be replaced (in which Builds), informed decisions can be made as to
 - which defects to fix in the current system
 - which modifications to make, and which to defer to the replacement system.

29

Systems Engineering and Evaluation Centre

The key to effective control

- Effective configuration control
- informed decisions about the impact of any change request on the product (capability) and process (cost and schedule)
- knowledge management

From the Cataract perspective

- Y2k was just a Discrepancy Report (DR) and changes made as a result of the analysis of the problem.
- Effective configuration control and information about the state of the project is vital.

35

Systems Engineering and Evaluation Centre

Examples from academia

 Several student projects per class of MSWE 617 at UMUC

- Entire life cycle
- 2 Semesters
 - S1 1999
 - Face to face
 - S2 2000
 - Distance mode
 - Face to face

UMUC MSWE 617

- Capstone course in the MSWE program
 - A comprehensive examination covering the application of the tools, skills and techniques the students have acquired in the course of their studies
- Provides experience in applying software-engineering techniques
 - an opportunity to produce software working in teams
 - under the schedule constraints commonly experienced in industry
- The instructor
 - emulates the vagueness shown by typical customers in describing requirements
 - serves as a guide and mentor, not as a traditional teacher
 - Guided the students through Build's 0 and 1 of the Cataract methodology

37

Systems Engineering and Evaluation Centre

Products

- Review packages
- Project management plan
- Software requirements document
- Test plan
- Software design document in presentation format
- Test procedures
- Software programmer's manual
- Application user manual
- Source code
- Test reports
- Management reports
- Installation instructions
- **■** Working application software.

Deskcopy (2000)

- Creates an electronic desk copy order form
- Monitors the state of the books ordered

Webphone (2000)

Modified COTS application

47

Systems Engineering and Evaluation Centre

Students produced

- Working software and online help information
- Manuals and documentation

- Installation
- Programmers
- Process-products
 - PMP, Requirements, designs, test plans and reports, management review packages
- Milestone review packages
 - OCR, SRR, PDR, CDR, DRR, CAT
 - Online presentations (2000)

MSWE 617 Spring 1999,

http://polaris.umuc.edu/~jkasser/classes/m6179902/mswe617.htm, last accessed October 23, 2002.

MSWE 617 Spring 2000,

http://polaris.umuc.edu/~jkasser/classes/m6170002/mswe617.htm, last accessed October 23, 2002.

49

Systems Engineering and Evaluation Centre

Summary

- The SLC consists of multi-phased, timeordered, parallel-processing tasks
- The Cataract methodology can produce systems that converge with the needs of the customer
 - with fewer cost and schedule escalations and project failures
 - provided appropriate knowledge management and configuration tools are used

50

0951-25

Discussion, Questions or Comments?

- QSE
- FREDIE
- Southern Cross
- CRIP Charts
- MSWE projects

51

Quality System Elements

- 01. Unique identification number.
- 02. Requirement (F + Qc)
- 03. Traceability to source(s) and implementation
- 04. Priority
- 05. Estimated cost
- 06. The level of confidence in the cost estimate
- 07. Rationale for requirement
- 08. Planned verification methodology(s)
- 09. Risk
- 10. Keywords
- 11. Production parameters
- 12. Testing parameters
- 13. Traceability sideways to Document duplicate links
- 14. Access control parameters